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Marine Injection of CO2: Background

• Marine sequestration of CO2 is a possible method to 
counteract the increase in atmospheric CO2.

• Costs of methods increase with injection depth. 
Residence times of sequestered CO2 increase with 
increasing depth.

• Using hydrate formation to sequester CO2 will 
decrease costs by decreasing depth necessary for 
injection. 



• The density of the composite produced depends highly 
on the conversion of liquid CO2 to hydrate.

Concept of CO2 Hydrate for Ocean Sequestration
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Objective of this Part
of CO2 Hydrate Injection

• Previous field and laboratory studies demonstrated 
the concept of injecting CO2 hydrate particles at a 
shallow depth for ocean sequestration.

• The objective of this research is to test a larger-scale 
continuous-jet hydrate reactor. 

• This reactor increases CO2 flowrate by approximately 
two orders of magnitude.



Methods Used in Laboratory at ORNL

The ORNL SPS
(Seafloor Process Simulator)

The ORNL
Continuous-jet 
Hydrate Reactor

• 72 L Volume
• Hastelloy
• Pressures  up 

to 20 MPa
• Temperatures 

0°C and up 
• 41 sampling 

ports



The Continuous-Jet Hydrate Reactor: 
Geometry and Conditions II
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The Continuous-Jet Hydrate Reactor: 
Geometry and Conditions I

• This reactor allows different capillary sizes to be used. 
– Single-capillary: 2.381-mm, 3.175-mm, and 3.969-mm
– Multiple-capillary: 0.379-mm, 0.794-mm, 1.191-mm, and 

1.588-mm.
• Variable flow rates for both liquids were tested.

– Water: between ~0.80 and ~3.00 L/min water
– CO2: between ~0.33 and ~0.66 L/min CO2 (pulsed)

• Pulsed CO2 flow duration is equivalent to CO2 ~5.5 L/min. 
• Temperatures: 1.5 to 5°C
• Pressures: 4.8 to 13.1 MPa
• Experiments were conducted in both distilled and saline water.



Summary of Parameters Investigated

– Bouyancy

– Pressures and Temperature

– Dispersed v. continuous phases

– Capillary size

– Capillary configuration (multiple or single capillary)

– Water chemistry

– Dissolution rates of produced hydrate



Experimental Results

• Liquid CO2/water/ CO2-hydrate consolidated 
composite particles were successfully produced in the 
laboratory.

• All capillary sizes and configurations yielded 
hydrates with varying buoyancies and levels of 
consolidation.

• Consolidated composites were formed at pressures as 
low as 4.8 MPa.



Effects of CO2 v. Water as Dispersed Phase I

• Buoyancy differences were 
observed between hydrate 
produced using water or 
CO2 as the dispersed 
phase.
– Experiments using water as 

the dispersed phase 
typically produced floating 
hydrate.

– Experiments using CO2 as 
the dispersed phase 
typically produced sinking 
hydrate.

– This behavior is due to the 
pulsed flow of CO2.

CO2 hydrate

Liquid CO2

Water

Water

CO2 hydrate

Liquid CO2



Effects of CO2 v. Water as Dispersed Phase II

• Clogging problems were not observed during testing 
of the injector, as apposed to previous experiments 
with smaller injectors.

• Using water as dispersed phase produced sinking 
composite only at pressures exceeding 13.1 MPa
(~1300 m). 

• Using CO2 as dispersed phase produced composites 
with greater density.



Effect of Capillary Size I

• Smaller capillary sizes typically produced more 
consolidated and dense hydrate composite.

• Reynolds Number: Re = 4ρQ/πdo µ
– The ratio of inertial forces to viscous forces. 

Ohnesorge Number: Z = µ/(ρσdo)0.5

– The ratio of viscous forces to surfaces forces. 

• This can be attributed to greater Reynolds and 
Ohnesorge numbers associated with smaller capillary 
sizes.



Effect of Capillary Size II
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Effect of Capillary Configuration: Multiple 
or Single-Capillary

• Results from multiple and single-capillary 
configurations with similar total cross-sectional areas 
were compared.

• These results indicated that multiple-capillaries 
produce more dense and consolidated composite.  
This is probably due to smaller droplet size.



Comparison of Single and Multiple-capillaries with 
Similar Total Cross-Sectional Area

U = Unconsolidated, C = Consolidated, S = Sinking, NB = Neutrally Buoyant, F = Floating  

C S1.1915.1U F3.1753.90.663.0010.3

C S1.1914.4C F3.1754.20.663.0011.7

C S1.1914.4NB C3.1754.20.333.0011.7

C S1.1914.4U F 3.1754.20.662.5011.7

C S1.1914.4U NB3.1754.20.502.5011.7

C S1.1914.4C NB3.1754.20.402.5011.7

U S1.1914.4C NB3.1754.00.332.5011.7

C S1.1914.4U F3.1754.00.662.0011.7

C S1.1914.4U F3.1754.00.502.0011.7

C S1.1914.4C F3.1754.00.402.0011.7

C S1.1914.4C NB3.1754.00.332.0011.7

BehaviorMm°CBehaviormm°CmL/minL/minMPa

DiameterTempDiameter TempCO2 FlowWater FlowPmin

Multiple CapillarySingle Capillary

1.191-mm multiple-capillary = 7.795 mm2 and 3.175 single-capillary = 7.913 mm2

• Hydrate produced using a multiple-capillary has a greater density than 
composite produced using a single-capillary of similar total cross-
sectional area.



Reynolds and Ohnesorge Numbers for 
Different Dispersed Phases.
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Effect of Water Salinity I

• The scale-up reactor was tested using saline and 
distilled water.

• The reactor produced negatively buoyant and 
consolidated hydrate in both saline and distilled 
water.

• Saline water increases the pressure and decreases 
temperature necessary to produce sinking hydrates.



Effect of Water Salinity II

C = consolidated, F = floating, NB = neutrally buoyant, S = sinking, and U = unconsolidated.  
Pmin = minimum pressure required to produce sinking composites. CO2 flowrates all at 0.66 
L/min

C S23.513.1C F24.713.1

C S24.411.7C F23.511.7

C S25.110.3C S-NB2211.7

C S25.29C NB2311.7

C S24.17.6C S31.611.7

C S24.16.7C S-NB21.511.7

U NB24.26.2C S31.913.1

U F24.24.8C S21.913.1

L/min°CMPaL/min°CMPa

BehaviorWater FlowTempPminBehaviorWater Flow Temp Pmin

Distilled WaterSaline Water

• Increasing water salinity lowered temperature and increased 
pressure necessary for producing sinking composite.
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Mass-transfer modeling
based on single particle

Additional effects occur in a plume
allowing the particles to descend 
for as much as 1000 m before 
dissolution:
• Solute density effect: Seawater 
density increases due to CO2
dissolution
• Plume effect: Particles sink with 
plume velocity plus settling velocity

CO2 Hydrate Dissolves as it Descends
in Seawater

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0 1000 2000 3000 4000

Time (s)

Te
rm

in
al

 V
el

oc
ity

 (m
/s

)

Riestenberg et al., ES&T, 2005



Summary
• A scaled up continuous-jet hydrate reactor 

was successfully developed and used to form 
hydrate composite particles.

• Optimum operation conditions at 
intermediate ocean depths for the continuous-
jet hydrate reactor were determined.

• Ideal conditions for producing negatively 
buoyant composites include the use of a 
multiple-capillaries, pulsed CO2 flow, 
temperatures of 2.0-3.0°C, and pressures ~ 
11.7 MPa.
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